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Most numerical methods developed for moving boundary or Stefan
problems deal with the case of a single moving boundary (MB)
separsiing two different media, Although this is applicable to a large
number of engineering problems, there are many problems where more
than one MB exists simullaneously during the process, A heat transfer
process involving heating of a solid, meliing, and partial vaparisation of
liquid can be considered as a three-phase Stefan or two MB probiem,
whete the time of appearance and disappearance of phases are to be
determined as a part of the solution. An explicit unconditionally stable
numerical scheme for such problems is presented and tested herein. The
approach originates from the explicit variable time step (EVTS)
method, developed by the same authars, for single MB problems,
During the vaporisation stage, where two MBs exist simultanecusly,
the method uses a virtual distorted grid network moving in paraliel
to the vapour/liquid interface in order to determine its position vis-3-vis
the real grid network. The method has been tested by solving both the
collapse of an adiabatic wall and a normalised two-MB problem whose
exact solution is known.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Many physical processes are modelled as moving
boundary problems (MBPs), in which partial differential
equations are utilised for adjacent domains separated by
boundarics whose movement must be determined as an
integral part of the solution. The singularities at the moving
boundaries add complexity as frequently different proper-
tics are required to describe the phenomena in cach distinet
region. Due to their wide range of applications, cfficient
analytical or numcrical solutions of MBPs arc still of
considerable interest (o the scientific and engincering
community. Since the conditions at the fixed and moving
boundaries are often complex, the analytical solution is
generally impossible 1o obtain. Therefore, recourse is
often made to numerical methods where most boundary
conditions can be accommodaled.

Heat conduction problems with phase transformations
are classified as MBPs but usually referred to as Stefan
problems according to J. Stefan [ 1] who published the first
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paper dealing with this subject. Most numerical methods for

moving boundary problems are generaily conceived for one

MB separating two phases [2]. Whilst singlc MB problems
are of considerable utility in modelling a whole class of

cngincering  problems, many engineering and physical

problems must be modelled with two or more MBs. Heat

conduction problems with heating of solid, melting, and

partial vaporisation of liquid is one such problem.

Bonnerot and Jamet [3] have introduced a conservative
finite element method which can be used to solve such
problems. They applied a modified and extended form of
their third-order-accuracy discontinuous finite element
method [4]. It adopts a curved triangular element for
each appearing or disappearing phase, whilst a curved
trapezoidal element is employed elsewhere (this method will
be referred to as the BJ method). However, finite element
techniques are time consuming and less amenable to
vectorisation than finite difference methods.

In this paper an aiternative faster and simpler method,
based on finite differences, is presented. The explicit variable
time step (EVTS) method [5] is extended to deal with
multi-phasc Stefan problems. The present scheme adopts a
fixed time-space grid network during the pre-melting stage,
a variable time step grid network during the melting and
vaporisation stages, and uses explicit finite difference
replacements lor the partial and ordinary differential equa-
tions. During the vaporisation period, which is the most
difficult period 1o compulie, the method uses the approach of
fixing the liquid solid (L/S} interface at a real space grid line
and determines the time step iteratively. Having arranged
the solution scheme, so that the L/S interface always coin-
cides with a spatial grid line. A further probiem is to deter-
mine the corresponding position of the vapour/liquid (V/L)
interface. Therefore the method uses a virtual distorted grid
network moving in parailel to the second MB; this permits
the explicit delcrmination of the position of the second MB
as well as the temperature throughout the liquid region
between the two moving boundaries.
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As in EVTS, the virtual sub-interval elimipation techni-
que {VSIET) [5] is incorporated throughout all the
different stages of the computation—to ensure that stability
is automatically maintained irrespective of the mesh size. As
a result of incorporating the VSIET the accuracy of the
present method is unaffected by the velocity of the MBs.

The numerical method s presented for a general heat
transfer problem which will be described in Section 2. For
validation, the method was used to solve the collapse of a
solid wall due to a heat flux input at one boundary with an
adiabatic condition at the other [37]. The problem involves
heating of the solid, melting, vaporisation, and finally com-
plete collapse of the wall when the solid phase disappears.
Numerical results are compared with those of the BJ finite
element method and show good agreement. Furthermore, a
normalised two-MB problem—which has an exact analyti-
cal solution—was considered and numerical results show
that the method achieves good accuracy relative to the exact
solution which is used as a reference standard.

2. DESCRIPTION OF MULTIPHASE STEFAN PROBLEM

Consider a solid material of infinite transverse dimen-
sions and thickness & to be subjected to a variable source of
heat F(r) at one extremity (¥ = 0) and in contact with a fluid
at a constant temperature 7 at the other (x = a). Assuming
that the heat transfer is one-dimensional and that the
material thermal properties are constant within each phase
but differ from one phase to another; depending on the
process duration, the following stages will occur.

2.1. Heating of the Solid Stage (0 €1 < 1,,; Fig. 13)

Due to the positive heat flux input, the temperature
throughout the solid increases with no change of phase. The
governing equations for this stage are

or, . 8T
C, =K =

5 at Ta"‘c_za M(l)éx:ga,

O0<rge,, (1)

ar
—Kj( “>=F(t}, x=0, 0<r<1,,

o (2)

aT
—*Kj(axs)zh(Ts(x,t)fTo), x=a, 0<1<1,, (3)
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where T(x, t) is the temperature at depth x time ¢; C, X,
a=K/C, and h are heat capacity per unit volume, thermal
conductivity, diffusivity, and convective heat transfer coef-
ficient, respectively. M(¢}, ¢,,, and ¢, denote the liquid/solid
interface position, the time at which melting starts, and the
time at which the heat transfer process ends, respectively.

2.2, Meiting Stage (1,,<t<1t,; Fig. 1b)

When the surface temperature T1(0, 1) reaches the melting
point of the material (7,,) a MB, x = M(t), appears which
separates the liquid from the solid. It is assumed that the
liquid and the solid have the same density and consequently
there is no displacement of the liquid surface; therefore, the
liquid occupies the region 0<x< M(r) and the solid
occupies the region M{r) < x < a. The liquid/solid interface
M(r) moves in the x direction and temperature increases
throughout the solid and liquid regions. In addition to (1)
and (3}, the equations

T 2T
C— =K7=, VOSx<M(), 1, <1<y,
(4)
oT

Kf(a_‘;,):F(t)s X:0, i‘J':ngt“‘qﬂrivs (5)

dM aT T,

Ay — = -k, [ =),

" dt 5(6;{) K’(@x)
x=M(), 1.<1<1,, (6)

are necessary to describe this stage, where 4,,,, V(7), and ¢,
arc latent heat of fusion per unit volume, the vapour/liquid
interface position, and the time at which vaporisation starts,
respectively. The subscripts / and s distinguish liquid and
solid phases, respectively.

2.3. Vaporisation Stage (t,< 1< t,: Fig. 1c)

When the surface temperature 70, +) reaches the
vaporisation point (7,) of the material, a second MB,
x=V{r), appears which separates the liquid [rom the
vapour. Assuming that the vapour is removed as soon as it
appears (i.e,, only two phases remain), the liquid occupies
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Three-phase Stefan problem with mixed boundary conditions.
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the region V{r) < x < M(¢) and the solid occupies M(r) <
x < a (the ablation case, where the whole liquid region is
instantaneously evaporated, is not considered in this work ).
The two MBs continue to propagate in the x direction and
the temperature increases throughout the solid and liquid
regions until the time at which the heat transfer process ends
(t.). The final time for the test problems in Section 4 is the
time for complete melting (i.e., when the liquid/solid inter-
face M(¢) has reached x = a). This stage is governed by (1),
(3), (4), (6) and the following condition at the second MB,
X = -V(I)’

L dv

orT,
Aoy =K (—()+F(I), x=V(), n<i<t, (7)

ox

where 4, is the latent heat of vaporisation per unit volume.
The following conditions apply for all three stages:

V{t)=0, <1,

M{t)=0, <,
TNx,)=T,, x= M(t), r=t,, (8)
Tix,n)=T, x= W), =3
T(x,0)=T,, Vxe [0, a].

3. NUMERICAL COMPUTATION SCHEME

In this section, a description of the numerical scheme for
the problem described in Section 2 is given in order of the
computational sequences, assuming that all the stages
occurred during the process. As previously mentioned, the
numerical method adopts a fixed time-space grid network
during the heating of solid stage and a variable time step
grid network in the melting and vaporisation stages. The
total thickness # is divided into a fixed number of space
intervals N, of length Ax, during the whole computation
Process.

Let 7, and j, be the time step indices so that
toSin<t, ., and ¢, <1,<t,,,. The notation T,;
stipulates the value of T at the real grid point in the (x —1¢)
domain given by the co-ordinates

Jdtg, J<Jm
x;=idx, 1,= il , , 9)
Tt Y At j2 (
q=jm

and V, is the value of V at the time ¢;.

3.1. Heating of Solid Stage

In this stage, where there are no phase changes, a fixed
time step At is chosen arbitrarily. The notation ¢, ; , , i$
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used to indicate the value of the variable y at the virtual grid
point in the (x — t) domain given by the co-ordinates

n
(xj= dx, 4, ,= (j-l—;) .Aro)

and the notation (j, n, p) represents the virtual sub-step
(VSS) at the time ¢; , ,, where n is the VSS index.

The temperature distribution at each VS8 {j, n, po),
where {1</<j,,1<n<p,}. is calculated from that of

the previous V88 (j, n— 1, p,), using

(10)

- - r, -
Ti‘j‘n.po= i,j.nl,poexp(_' = _‘Jlf,j,n—»l,pu)’
ifm—1,pn
i=0,N, (11)
where
- _ AxN .
rz (Tr,j,n.p_ Ti+ Ljimp _(HK-:—) Sy P)’
i=0,
(2Tr',j,n,p - Ti— Linp j:‘i+ l,j,n,p)’
lﬁr’.j,n.p:< lgl-ﬂN—l, (12)
hAxN - —
2((1 + X ) Tijnp—Ticjme
_(” A") To), i=N,
\ K,
where
F;",M.p=%{F([j.n‘p)-i"F(tj,n-Pl.p)} (13}
. o, Aty ax, Aty
= - — 1 = 14
po=int (rf sz) +h e Po AX? (14)

where “int(y)” defines the smallest integer less than y; r,is
an arbitrary fixed value of Fourier number (rr< %).

The temperature distribution at the last V88 (j,n=
Pos Do) of each time step is assigned to the real grid; the
temperature distribution at the time 1 =1¢, , is given by

To,1=T i=0,N. (15)

I J, 0. po*

In order to avoid stability problems when the rate of the
heat flux input prescribed at x =0 is relatively high, it is
necessary to calculate the temperature distribution at the
first time step j = 1 analytically (see Appendix).

Suppose at some intermediate VSS (j,., n,., py), the sur-
face temperature exceeds the melting point T, then the

‘time at which the melting starts (¢,,) is given by

A _ 2
Im = Jm Alo+ (n,,— 1) (—IQ)‘P(—"i—)
Po a:d’o,jm.nm— 1, po

T,
x Log, (+)
T

0, jims e — 1, po

(16)
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3.2. Melting Stage

For Sections 3.2 and 3.3 we use the notation §* P (¢

indicate the & th iterated value of the variable  at the virtual
grid point in the (x — r) domain given by the co-ordinates

i—1 arf
(x,-=iAx, tj.“n'p=t,,,+ z At,,-H’T—k), (17)

q=lm i

where A1, is the time necessary for the moving boundary
M(1) to move from the position x=x, , tox=x,,; , .

For this stage, the temperature throughout the liquid and
solid regions as well as the position of the moving boundary
M(¢) are computed using the EVTS method [5]. At some
VS8 {j..n,, p), the surface temperature will exceed the
vaporisation temperature (7,); once this occurs the

vaporisation time (¢,) is calculated using

. Jem ny—1y — 4x?
Y PG EL PPV
I

9= jm Ju 0, jpme—1,p

x Log, (ti—)
Tk

O Jume—Lp

(18)

After determination of the time at which the vaporisation
starts, computation is carried out similarly to melting until
the condition given by (31} is verified. Consequently a liquid
region of thickness x = x, near the surface will be super-
heated (i.e., temperature is above the vaporisation point).
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3.3. Vaporisation Stage

At the beginning of computation of this stage, the liquid
region of thickness x =x, is superheated, equilibrium is
established by vaporisation of the superheated liquid to a
liquid depth of x = x,. A mathematical expression similar to
that suggested by Heitz and Westwater [6] and later
developed by Hsu et af. [7] for a superheated solid is used:

C, o
=71,

Generally the superheated region extends less than one
space increment; therefore T,(x, ¢, ;) can be approximated
by a polynomial of degree one in the region 0< x < x,.
Hence, the depth of the initially vaporised material is deter-
mined directly without recourse to numerical integration.

At any time during the vaporisation stage, where two
MBs exist simultaneously, both the energy balance condi-
tions given by {6) and (7) must be satisfied at each time step.
The method ensures that M(#) moves a space increment Ax
and determines iteratively the time step A¢ necessary for that
move. During each VSS at each iteration, the position of
V(¢) is adjusted to satisfy the condition given by (7); hence,
the problem is simplified, as in Section 2.2, where the test for
halting the iterations is carried out at the liquid/solid inter-
face only. In order to achieve this, it is assumed that there
is a virtual distorted grid network (y —¢) formed by ¥{z),
and two lines (one at Ax and the other at 2 Ax relative to
V(t)) moving in parallei with ¥{¢) (see Fig. 2b). To trans-

X3 (Ty(x, ;1) —T,) dx. (19)

)
(JymP) (jn+1, ) 4 ut TS
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, ) i ) ' 1 ' 1 e 1 1
im+1 Y Y Y 1 1 ] 1 ‘i"-_.b [ 1
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FIG. 2. Discretisation around the moving boundaries together with both real and virtial grid networks: (a} around the liquid/solid interface,

x = M(1); (b) around the vapour/liquid interface, x = V{(r).
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form the equaticns from the original grid (x —¢) to (y—1)
the transformation y=x+ F(¢) was used, applying the
chain rule, Eq. (4) becomes

(20)

Writing Eq. (20) between two VSSs, (/i nm p) and
{(/,n+1, p), and assuming a linear propagation of V(s)
between each two VSSs, (dV/dt) can be approximated by
% p Which represents the variation of F(¢) during the
course of (j, n, p)and (j, n+ 1, p), Eq. (20) becomes

oT, T, oT,
el PRVl S St 21
at o 6y2 x;.n.p ay ( )

Following the procedure of Bhattacharya [8, 9], Eq. (21)
has a difference solution of the form of (11). The tem-
perature 85, | —at the first virtual distorted grid line D1,
which is situated Ax from the position of the MB x = ¥(¢),
at (j,n+1, p}—is given by

6% =6% _exp(—r

k k )
i+l p™ Yinmp ’

o f¥jn p

(22)

where
Axg* N2 1
ko S p Gk _ =k
j,n‘p_( 20!, )+(6j{n'p){(26ﬁ”'p qoj'n!p Tv)

sz;(r: p)
— =) (T, —¢},,)
( 24, pmr

Ax 1%, P)2
I L T,+ —'_‘" )}’
(2\6&, ( Pims

5, are defined as

(23)

where pf and r

o, Atf

ks : k
p.=mt(————)+1, For j=
’ rp Ax® "

a, At*
2L (24)
Py Ax?

As the position of V(r} is conditioned to satisfy the energy
balance at x = ¥{(r), replacing (7} by a finite difference gives

Y TN K, o
x,-,,,.,,=()l pk){ﬂ.n,p—;(T,,—B,-,,,H,,,)}- (25)

vEy

Since ;Efw is not known, to solve (22), (23), and (25), an
iterative procedure is used starting with ;Ef,? psz‘nq_ o
Due to the small iength of sub-intervals, g%, , is generally
determined in two iterations only.

After determination of 75, , the temperature at the sur-
face node, i =i, —which is the first node below x= V() in
the original (non-distorted) grid (see Fig. 2b), at the VSS§
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(/, n+ 1, p)—can be interpolated by using simple interpola-
tion from the temperature at the virtual distorted line D1
and the temperature at the moving boundary x = ¥{(¢),

ok
T ‘

- A If i+ 1,
fomstp=05nin, |:1 —mod (—f, 1)]

Ve
+n[ma(220)] e

Ax
where mod(y, x) = y — x int{ y/x) and VY. .1, 1s given by
(27)

17;€H+1,p= ijl + Z Zﬁn.p‘
0

h=

Now the computation of temperatures at the virtual grid
points, i>i,, throughout the liquid are carried out in a
manner similar to that in Section 2.2. It can be seen from
(23) that for the next V8S, the temperature qﬁf" +1.,—atthe
second virtual distorted line D2, at (j, n+ I, pr—must be
known. In order to minimise the CPU time, it is calculated
by a simple interpelation from temperatures at the original
{non-distorted) grid and it is given by

Zn
- = Sn+1l.p
(pin+l.p=Ti+2‘j.n+1~p[l_m0d(_ Ax sl):l

7k

= V'r;
+ Tﬁ+ Ljn+lp [mod (_}A;Lpe 1):| (28)

The position of F(¢#) and the temperature distribution
throughout the liquid and solid regions (computation of
temperature distribution throughout the solid region is
similar to Section 2.2} at the time ¢ = 1§, | are given by

K
p}—i
Vj‘(+1: Vj+ Z sznﬂ (29)
n=0
_k s .
T,,J‘Pj«'p, i=i,i,—1,
T{fj+1 = Tma i:imz (30)
Thida  i=int LN

Once the temperature distribution throughout the solid
and liquid Tegions at the time ¢ = tj’.‘H has been estimated
from (30), all the intermediate time steps are virtual and are
progressively eliminated; the criterion used for convergence
of the temperature fieid is

|£_:y(—| "<- 8mirw

(31)

where ¢, is the time step error allowed to stop iterations
and ¢} is given by

Atk —&*
k= 100><T, (32)

7
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where

1
&= {()—sz) (KAT; o1 —Tn)

1
—K.\‘(Tm_ T:’;+l.j+l)]} . (33)

If Eq.(31) is not satisficd, a relaxation procedure is
applied to determine the time step for the (k+ 1)th
iteration,

k

k41 k &
A7 =4t (1 — lOOw)’

where w 1s a relaxation factor and Atj(.’ =dt; .

Remark 1. When the energy balance at x = M(!) takes
into account the temperature gradient in one phase only as
in test problem 2 of Section 4, the time step at the next itera-
tion Ar§*! can be determined by a similar procedure to that
suggested by Gupta and Kumar [10] (ie., 414" = &%), For
the case of two MBs such as problem 2, the procedure may
converge in certain cases and may not in others; however,
Eq. (33) has shown satisfactory convergence for ail the

computations performed.

(34)

4. TEST PROBLEMS

ProBLEM | (Collapse of a solid wall). The method
described in Section 3 has been used to solve the collapse of
a solid wall due to a constant heat flux input F at x =0,
whilst the other extremity x =g is thermally insulated (i.e.,
dT/ox =0 at x =) [3]. Solving this problem is similar to
solving the problem previously described in Section 2 but
with a convective heat transfer coefficient #= 0. Bonnerot
and Jamet [3] demonstrated the solution of the problem
with two different sets of data.

PROBLEM la.
a=1, Tix, 0)=27, F=12500,
C,;=C,=4944, K,=K =0.259,
(35)
A, = 2160, A, = 37200,
T, =1454, T, =3000.

This data set permits all three stages (i.e., heating of solid,
melting, and vaporisation) to occur. For the present method
a choice of 4x =0.02 was used so as to have approximately
the same total number of grid points as the BJ method,
where At/4x= L. For the present method, which will be
referred to as the ZC method, a relaxation factor w= 3.0,
&min = 0.05%, and r,=10.30 have been used. A comparison
of results using the BJ and ZC methods is given in Table I
and Figs. 1, 2, and 3; these are discussed in Section 5.
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TABLEI
Problem la: Comparison of ¢,,, 1., t., and F(¢,)
for Different Time increments A¢

At tm t, L, K1)
BJ method [3]

1/4 0.36150 1.63034 9.75464 0.28351

1/8 0.32897 1.63611 940210 0.26703

1/16 0.32767 1.63446 9.38719 0.26633

1/32 0.32768 1.63439 9.38708 0.26632
ZC method

1/4 0.32740 1.58887 9.15%07 0.26318

1/8 0.32660 1.58783 9.15828 0.26319

1/16 0.32580 1.58705 915745 0.26318

1/32 0.32494 1.58620 9.15670 0.26319

Remark 2. Since the time step during the melting and
vaporisation stages for the ZC method is variable, the At
quoted in Tables I and 11 is the 4, defined in Section 3.1.

ProBLEM 1b.
a=1, T(x, 0)=27, F=12500,
¢;=c,=1.041p, K,=173, K, =0.863, 36)
4, =400p, 2,=10700p,
T, =638, T,= 2480, p=277

where p is the material density.

With this data set, the melting interface reaches the
adiabatic boundary before vaporisation occurs; the process
is therefore reduced to a single MB problem. The same
parameters (ZC {A4x, rp, @, ey, {3 BJ {41/Ax, £}) have been

—— x=M(t), BJ methed
x=M(t}, ZC method
x=V{t), BJ method
x=V(t}, ZC method

——

——

——

Interfaces position

time (t)

FI1G. 3 (Problem la).
interfaces versus time.

Position of the liquid/solid and vapour/liquid
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TABLE II

Probiem 1b: Comparison of ¢, t., and T(0, t,)
for Different Time Increments A¢

At Im z, {0, 1,)
BJ method [3]

1/4 0.23485 1.92536 2349.18

1/8 0.23401 1.92383 2347.98

1/16 0.23400 1.92381 234796
ZC method

1/4 0.23352 1.89063 2341.45

1/8 0.23398 1.88747 2341.40

1/16 0.23390 1.88719 2341.40

used as in Problem la. The comparison of results of the ZC
and BJ methods is shown in Table IT and Figs. 4, 5, and 6;
these are discussed in Section 5.

ProeLEM 2. In order to further validate the accuracy of
the method, the following normalised two-MB problem,
whose exact analytical solution is known, was considered. A
solid material melts due to a variable heat flux input applied
at the liquid surface, the temperature throughout the solid
region is always assumed to remain at the melting point.
The governing equations are

eT, azT,
— =0, VOy<x<M(t), 0O0<t<t, (37
5 = (t) (t) (37)
orT
= _expla,t), x=0, 0<t<1, (38)
ox
1 dM aT,
——=——  x=M(, 0<:i<t, 39
o, dr dx ) )
4000
—o0— x=4/2, BJ method
A —t—  x=a/2, ZC method
3000 4 —=-—  x=0, BJ method
33 —— x=0, ZC method
F -
Q
3
o
§ 20001
g
12
1000 <
o.‘ v T v v T T L v v
2 4 6 8 10
time ()

FIG. 4 (Problem la). Temperature versus time at different depths.

0.20
—=t—  dM/dt, BJ method
1 —w—  dM/dt, ZC method
k] —o~—  JV/at, BJ method
.g 0.151 dV/dt, ZC method
2
w
E 3.10
g
5
&
2
g 0.05 - no
0.00 > —————— —
4] 2 4 -] 8 10

time (t)

FIG. 5 (Problem 1a). Velocity of the moving boundaries versus time.

T, dV

R <<

2, di exp(a,t,), ,Er<t,, (40)
T,=1.0, MY x<1.0, 120,

T’(x”)z{'r x=V(D), (>t (41)

M(0)=0, T,(x0)=10 for 0<x<10. (42)

The exact analytical solution is given by

Tl(xs t)=exp(ot,!—x), M([):C(,l, V(t)=0$;(l—f{.)
1 1 (43)
tL:“LOge(Tv)’ f,=—.
o a4,

Since in this particular problem the condition at the
seccond moving boundary (vapour/liquid) is not coupled to
the temperature gradient in the liquid region; the virtual dis-

1.50
=——0— xz=M(t), BJ method
1.25 4 —%— x=M(t}), ZC method
o
=
N 1.004
‘s )
=3
=
2 0754
1= %
8
3 0504
5
0.25 4
0.00 T T T r
0.0 0.5 1.0 1.5 2.0

time (t}

FIG. 6 (Problem lb). Position of the liquid/solid interface versus time.



MULTIPLE MOVING BOUNDARY PROBLEMS

TABLE HI

Problem 2: A Comparison of Computed History of the Moving
Boundaries M(r) and V(r) with the Analytical Solution

M) ity fan PDt 4™ Van PDV
0.1 0492868 05000 —1.426458

0.2 0987501 1.0000 —1.249921

03 1482948 15000 —1.136717

04 197904t 20000 —1.047945

0.5 2475761 25000 —0.969506 0092003 0.094535 —2.677884
0.6 2973228 30000 —0.802385 0.191497 0.194535 —1.561637
0.7 3471273 35000 —0.820732 0291106 0.294535 —1.163964
0.8 3969764 40000 —0.755506 0390805 0.394535 —0.945447
0.9 4468581 4.5000 —0.698196 0490569 0.494535 —0.801985
1.0 4967664 50000 —0.646725 0.590385 0.594535 —0.697940
Note. Percentage deviations are also tabulated.

torted grid network is omitted to reduce the CPU time. The
temperature near the vapour/liquid interface is computed in
a similar manner to that near the liquid/solid interface.
Numerical results when T, = 1.5T,,, @ =20, r, =035, and
Emin = 0.01 % are shown in Table IIT and Figs. 9 and 10.

For accuracy assessment, the maximum percentage
deviation for temperature (MPDT) is defined as

MPDT: max{((l PDTF,_;’l )s I= 09 N), J’= 0! j(‘}s (44}

where PDT, ;is the percentage deviation from the analytical

temperature calculated at the nodal point (x;, 1;) which is

given by

Tl X, f,') — Taulx,, [,-')
TAn(xis tj)

The maximum percentage deviation for time (MPDt) is

given by

PDT, ;= 100 x (45)

MPDt = max{{|PDt1), j=0, j.}, {46)
3000
—T— x-=0, BJ method
2500 - —w—  x=0, ZC method
= — 9% x=a, BJ method
1‘2 2000 x=n, ZC method
£
5
e
g 1500 -
g
-+
|4
100G
500 A
o ot . .
0.0 0.4 0.8 1.2 1.6 2.0

time (t)

F1G. 7 (Problem 1b). Temperature versus time at different depths.
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FIG. 8 (Problem 1b). Velocity of the moving boundary versus time.

where
() e — (1) an

(lj An

PDt, =100 x (47)

The percentage deviation for vaporisation (PDV) interface
position is given by

(Vidnw = (V)an

PDV, =100 x —=e
JlAn

, (48)

where the subscripts An and Nu refer to the value calculated
analytically and numerically, respectively.

5. NUMERICAL RESULTS AND DISCUSSION

Numerical results show that for Problem la, which
corresponds to a low conductivity material compared to

= MPDT
— =& MPD:

—o—-PDj'
—>—— FD;
v

—— PDV Je

Percentage Deviations (%)
~
L

Number of space elements (N)

FIG. 9 (Problem 2). Percentage deviation for different variables of the
solution versus the total number of space increments ¥ (a=0.1).
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FIG. 10 (Problem 2). Variation of percentage deviations with

velacities of the moving boundaries {4x =0.02).

that used in Problem 1b, the vaporisation occurs before the
liquid/solid interface reaches the adiabatic boundary. On
the contrary, in Problem 1b, the wall collapses before the
appearance of a vapour/liquid interface and therefore the
problem is one of melting only.

Table I, Figs. 3, 4, and 5 show that for Problem la, both
the BJ and ZC solutions are in good agreement; a maximum
relative error of only 2% occurs between the two solutions.
For Problem 1a, the BJ method has a CPU time of 40 s,
whereas the ZC solution takes only 9s (non-vectorised
program) on an IBM3090/150VF. The ZC scheme is more
than four times faster than the BY method. Using vectorisa-
tion, the speedup factor due to vectorisation varies from 2.5
to 3.5 for the BJ method, whereas it varies from 5 to 6 for
the ZC method. This, however, is due to the fact that explicit
methods are more suitable for vectorisation than implicit
finite difference and finite element methods [ 11 ], where the
unknown variables are determined with recurrent do-loops
(1.., do-loops that form a cycle of variable dependencies).

Figure 5 shows the velocity history of the two MBs for
Problem la, where the L/S interface starts with zero
velocity and reaches a maximum speed just after its
appearance; its propagation speed then starts to decrease
due the greater thermal-resistance of the liquid. When
the V/L interface appears, the L/S interface slows sharply
due the heat loss from vaporisation. The V/L interface
accelerates sharply in the initial instance; then it continues
to accelerate at a lower rate throughout the process. The
L/S interface velocity reaches a minimum; then it starts to
increase again. This is due to the fact that the heat flux
entering the solid region decreases sharply when approach-
ing the adiabatic extremity {ie., there is less energy
absorbed as the whole solid region approaches the melting
ternperature). The heat flux at the L/S interface decreases
with a smaller gradient than the heat flux entering the solid
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region resulting in a greater proportion of the energy being
available to melt the solid material; meanwhile, the V/L
interface converges towards a constant acceleration due to
the constant heat flux input. Before the total melting or the
collapse of the wall, the L/S interface velocity starts to
decrease due to the decreasing heat flux through the liguid
and the absence of heat flux in the solid region.

As with Problem la there is good agreement between the
two solutions for Problem 1b: this i1s shown in Table II,
Figs. 6, 7, and 8. Unlike Problem la, the material used
in Problem 1b is a good conductor of heat; therefore, the
melting process is faster than that in Problem la. This can
be seen from Fig. 8, where the velocity of the L/S interface
is much higher than that predicted by Fig. 3; the wall collap-
ses at £ = 1.8 rather than =92 for Problem la. Unlike the
behaviour of the L/S interface in Fig. 3, the melting interface
for Problem 1b always accelerates due to the higher conduc-
tivity of the liquid, compared to that of the solid. At the end
of the process the L/S interface has a similar behaviour to
that of Problem 1a due to the adiabatic extremity,

Figure 9 shows that MPDT, MPDt, PDt,, PDt,, and
PDV, all decrease as N increases for Problem 2. In other
words, the accuracy of the ZC method increases by
increasing the total number of space elements which results
in greater CPU time. It also can be seen that despite the
singularities that appear with each moving boundary, the
accuracy is very satisfactory, Maximum errors for the dif-
ferent variables of the solution are always generated at the
appearance of a MB, these errors decrease with time as
shown in Table II. Due to the incorporation of the VSIET,
the accuracy of the present scheme is unaffected by the
nature of the heat transfer problem; this can be seen from
Fig. 10, where the percentage deviation for the different
variables in the solution remain constant with the variation
of moving boundary velocity. Therefore the method
presented can be adapted to any heat transfer problem
irrespective of its nature, and good accuracy can be achieved
by tuning the parameters r,, 4x, and ¢,

6. CONCLUSION

Vectorisation is an essential tool to increase performance
and reduce the CPU time of large scale computation;
explicit methods, where the unknown variables are deter-
mined with no recurrence (i.¢., a group of statements that
form a cycle of variable dependendies), are more suitable
for vectorisation. However, if computations are to be
petformed for extended times, explicit methods do have
instability constraints which make higher demands on
computer memory requirements due to the large amount of
data that must be stored. The significance of the method
presented is that it combines the advantages of variable time
step methods and explicit procedures whilst excluding their
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disadvantages. The variable time-step approach requires
less memory and storage requirements than a fixed grid
network; this results in highly efficient use of the computa-
tional platform, The virtual sub-interval elimination techni-
que ensures the stability of the scheme irrespective of the
mesh size without increasing the array size; it also permits
a high degree of vectorisation of the scheme.

APPENDIX: COMPUTATION OF TEMPERATURES
AT THE FIRST TIME STEP

The dummy point temperature approach which is
generally used to convert a heat flux to a fictitious tem-
perature outside the domain is not a sufficiently accurate
approach if the time step is relatively large at the beginning
of the computation, where the solid is at constant tem-
perature throughout, Therefore, in order to avoid instability
of the scheme and, also, the need for extremely small
increments, it is necessary to approximate the temperature
at the first time step analyticaily. Since the temperature at
x =g remains unchanged during the time 0 < ¢ < 41, the
integral transform technique {127 was used to solve Eqgs. (1)
and (2) for a semi-infinite slab subjected to constant heat
flux F, at x=0, yiclding the following solution for the
temperature distribution:

2F )
TS(X, t)= KC (Otst)uz terfc (ﬁ)—i—)—ﬁ) + T,

5

0 < dry,. (49)

The heat flux during the time 0 < ¢ < A1, is approximated
by the average of F(0} and F(4¢,), hence the temperature
distribution at the time 1, = At is given by

F(0) + F(At,) . iAx
T,-'!z—so(dsdto)l'lee['fc W + T,
0<i<N, (50)
where
2
ierfc(x) = % — x erfe(x), (51)
erfe(x) = 1 —erf(x), (52)
and
erf(x) = —5 | exp(~ 1) dy. (53)
Tcuz 0
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Combination of (51) and (52) gives
2
ierfe(x) = ﬂ%—x(l ~erf(x)). (54)

In order to reduce the computational time to the mini-
mum possible, erf(x) is approximated within an error of
le(x} < 1.5x 107 by [13],

5 1 i
erf(x)=1—exp({—x?) [El a; (m) ] +e(x), {55)

where

bh=0.3275911,
a, = —0.284496736,
a, = —1.453152027,

a, = 0254829592,
a,=1.421413741,
as = 1.061405429,

(56)
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